

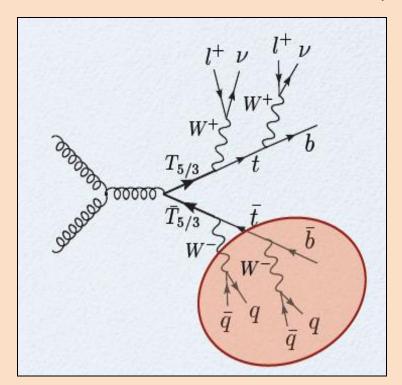
Top Quark Partners with Exotic Charge (T_{5/3})

Aram Avetisyan

Boston University

Top Partners

- Heavy top partners are a common prediction of different theories
 - Couple to 3rd generation quarks
 - Solve hierarchy problem
 - Compatible with 125 GeV Higgs
 - See arXiv:1212.1380 (Int. J. Mod. Phys. A Volume 28 (2013) 1330004)
- Can be found in
 - Minimal Composite Higgs
 - Extra dimensions (KK gluons)


The $T_{5/3}$

- Top partner models include several particles
 - Focus on quark with charge 5/3
 - Typically the lightest
- Theoretical descriptions
 - Contino & Servant, JHEP 0806:026 (2008)
 - Mrazek & Wulzer, Phys. Rev. D 81, 075006 (2010)
 - More recently: CERN-PH-TH/2012-323 (arXiv:1211.5663)
- Experimental results
 - CMS-PAS-B2G-12-012 (8 TeV) excludes $M(T_{5/3}) < 770$ GeV at 95% C.L.
 - ATLAS-CONF-2012-130 (7 TeV): 670-700 GeV depending on coupling
 - Published result: CDF (Phys.Rev.Lett.104:091801, 2010), 365 GeV

Model

- $T_{5/3}$ with $Q_e = 5/3$ and B with $Q_e = -1/3$ decay into W and top
 - Per Mrazek & Wulzer, B is typically more massive than $T_{5/3}$
 - Focus on $T_{5/3}$
- Most striking signature: same-sign dileptons

$$l^{\pm}l^{\pm} + 2b + 2W$$

The hadronically decaying T_{5/3} can be reconstructed

Cross-Sections

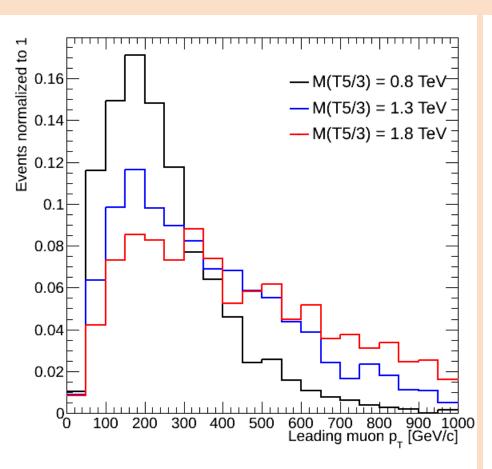
	$\overline{\mathrm{M}(T_{5/3})}$	σ (8 TeV) [fb]	σ (13 TeV) [fb]	σ (33 TeV) [fb]	
	700	5.69e + 01	4.41e + 02	8.36e + 03	
	800	2.08e + 01	1.90e + 02	4.20e + 03	
	900	8.07e + 00	8.80e + 01	2.25e + 03	
NNLL	1000	3.27e + 00	4.30e + 01	1.28e + 03	
cross-	1100	1.37e + 00	2.19e + 01	7.57e + 02	
sections from	1200	5.85 e-01	1.15e + 01	4.66e + 02	
HATHOR	1300	2.53e-01	6.26e + 00	2.95e + 02	
(arXiv:	1400	1.10e-01	3.47e + 00	1.93e + 02	
1007.1327)	1500	4.81e-02	1.96e + 00	1.28e + 02	
	1600	2.08e-02	1.12e + 00	8.73e + 01	
	1700	8.92e-03	6.53 e-01	6.05e + 01	
	1800	3.75e-03	3.83e-01	4.25e + 01	
	1900	1.54e-03	2.26e-01	3.03e+01	
	2000	6.17e-04	1.35e-01	2.19e + 01	
	2100	2.39e-04	8.03e-02	1.60e + 01	
April 4, 2013	2200	8.90e-05	4.81e-02	1.18e+01	

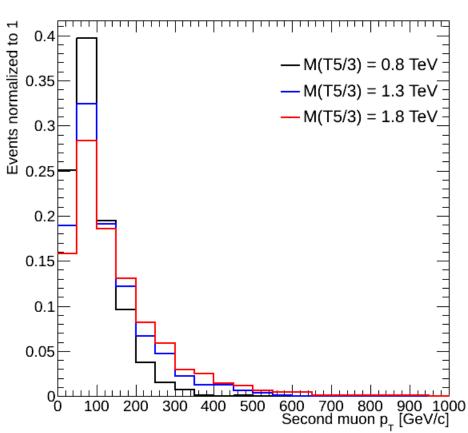
Selection

- Two same-sign leptons
 - Tight ID and isolation
 - Similar to top quark leptons, but more attention to charge
 - p_⊤ cut of order 30 GeV
 - Z-veto
- Jet multiplicity
 - At 8 TeV, count jets with $p_T > 30 \text{ GeV}$
 - Raise this at higher energy
- H_T = scalar sum of p_T of selected leptons and jets
- ATLAS uses missing E_T and b-tagging

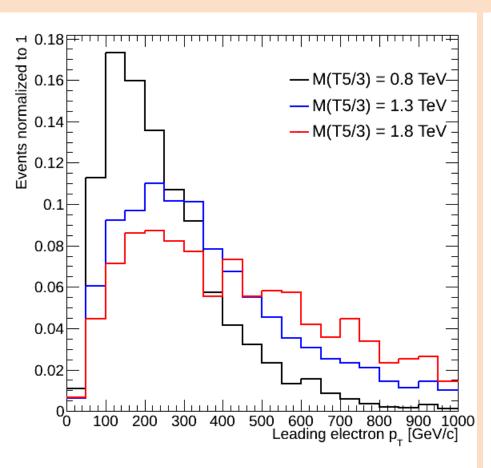
Background Determination

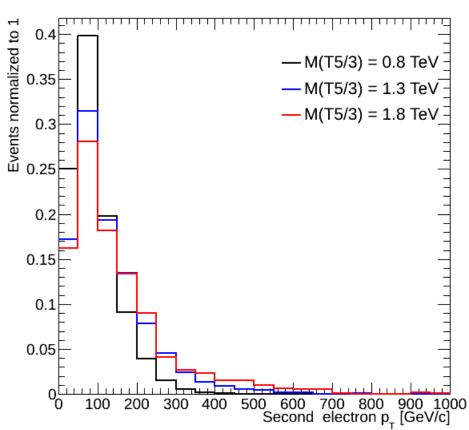
- Rare Standard Model backgrounds with prompt same-sign leptons
 - ttbarW, ttbarZ, WZ, ZZ, same-sign WW, WWW
 - Some already generated, the rest after the major backgrounds
- Backgrounds from charge misID (Z+Jets, ttbar)
 - Get misID probability from Z events, do analysis with opposite sign leptons and multiply
 - Data driven, but Monte-Carlo describes this well
- Non-prompt lepton backgrounds
 - Leptons misidentified as jets
 - Leptons from heavy flavors, decays in flight
 - "Fake rate" method (also known as "tight/loose")

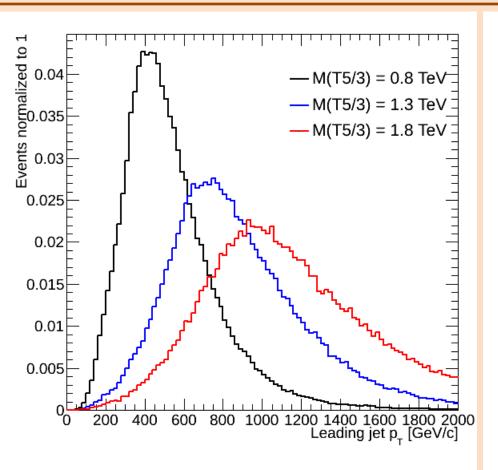

Tools

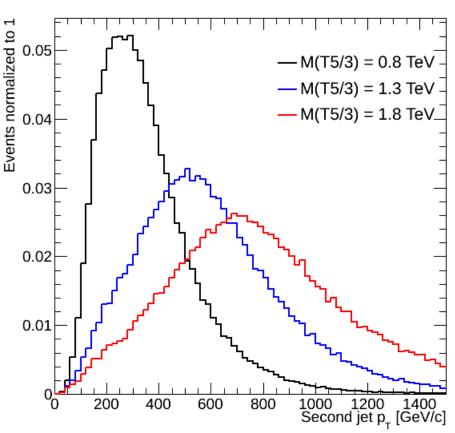

 Using the framework described in <u>https://indico.bnl.gov/getFile.py/access?contribId=51&sessi</u> onId=2&resId=0&materialId=slides&confId=571

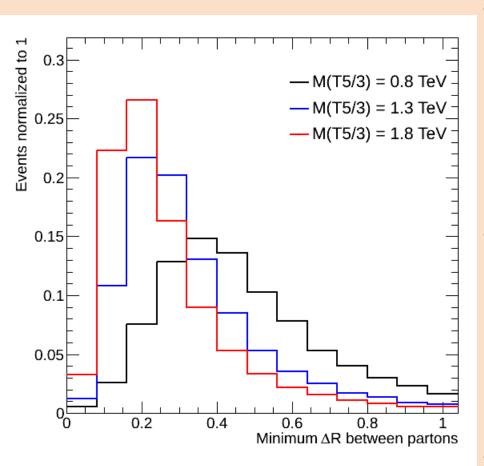
- MadGraph5 v1.5.8
- Simulation with Delphes3
 - Use parametrization cards from S. Padhi
- Processed on Open Science Grid

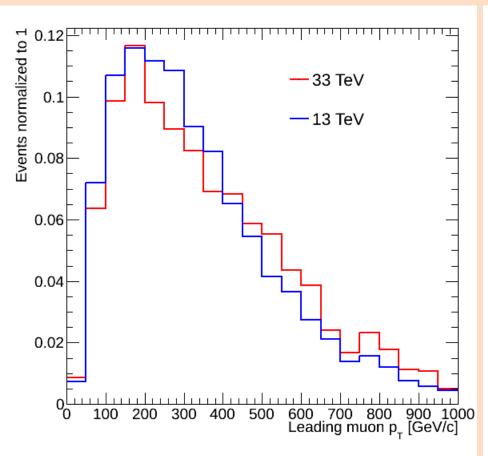

RESULTS ARE PRELIMINARY!


Muon p_T (33 TeV, 0 Pileup)



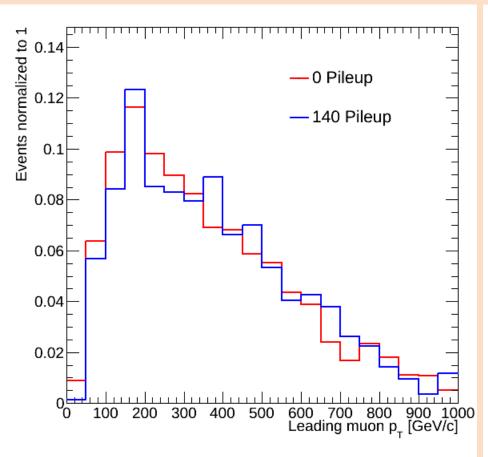

Electron p_T (33 TeV, 0 Pileup)

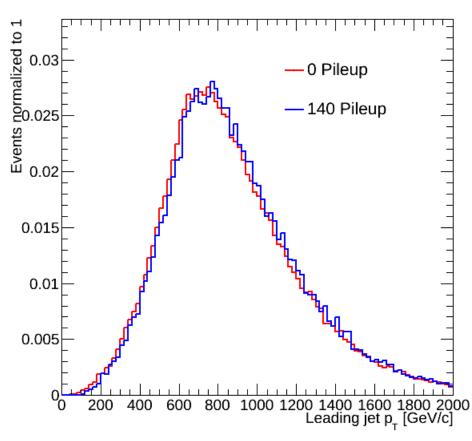

Jet p_T (33 TeV, 0 Pileup)


- Jet p_⊤ is more distinct
 - Also, much higher

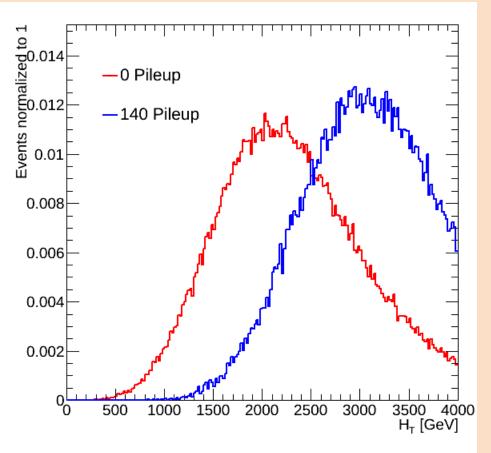
Boosted Objects

- Decay products of T_{5/3} are boosted
 - More noticeable with the W
 - Effect increases with $T_{5/3}$ mass
- Consider dR between gen-level objects
 - Status 3 particles with PDG ID < 6 and $p_T > 30 \text{ GeV}$
- Definitely need jet substructure techniques
 - Delphes EFlow objects


33 TeV vs. 13 TeV (M = 1300 GeV, 0 Pileup)



• $T_{5/3}$ is heavy, even for 33 TeV


Effect of Pileup (33 TeV, M = 1300 GeV)

- Using pileup subtraction
- Effect on shape of leading objects is small

Pileup and H_T (33 TeV, M = 1300 GeV)

Drawbacks:

- Electron efficiency decreases by 18%
- Muon efficiency by 20%
- Pileup subtraction is not perfect
- This is preliminary

 Better subtraction scheme for jets once Delphes parameters are finalized

Conclusion

- First look at top partner with charge 5e/3 at 33 TeV and 13 TeV
- Search is feasible
- Next steps:
 - Finalize Delphes parametrization
 - Pileup subtraction will be improved
 - Jet substructure in Delphes
 - Generate same-sign backgrounds

 Thanks to S. Padhi, M. Slyz, J. Stupak and everyone from snowmass-ef-cern